《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于Faster R-CNN的道路裂縫識別
基于Faster R-CNN的道路裂縫識別
2020年電子技術應用第7期
李太文,范昕煒
中國計量大學 質量與安全工程學院,浙江 杭州310000
摘要: 傳統的道路裂縫識別方法有基于R-CNN、SPPnet、HOG+SVM等多種方法,但識別精度低、檢測速度慢。針對這些缺點,提出一種基于Faster R-CNN的道路裂縫識別方法。首先,采集道路裂縫圖像,建立Pascal VOC數據集;其次,基于谷歌開發的TensorFlow深度學習框架,用數據集對Faster R-CNN進行訓練并分析各項性能參數指標。實驗結果表明,在迭代20 000次的情況下,可將訓練損失降到0.188 5,AP值達到0.780 2,取得了良好效果。
中圖分類號: TN13
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.191412
中文引用格式: 李太文,范昕煒. 基于Faster R-CNN的道路裂縫識別[J].電子技術應用,2020,46(7):53-56,59.
英文引用格式: Li Taiwen,Fan Xinwei. Road crevice recognition based on Faster R-CNN[J]. Application of Electronic Technique,2020,46(7):53-56,59.
Road crevice recognition based on Faster R-CNN
Li Taiwen,Fan Xinwei
School of Quality and Safety Engineering,China Jiliang University,Hangzhou 310000,China
Abstract: Traditional road crack recognition methods are based on R-CNN, SPPnet, HOG+SVM and other methods, but the recognition accuracy is low and the detection speed is slow. In view of these shortcomings, a road crack recognition method based on Faster R-CNN is proposed. Firstly, road crack images were collected to build Pascal VOC data set. Secondly, the TensorFlow deep learning framework developed based on Google trains the Faster R-CNN with data sets and analyzes various performance parameters. The experimental results show that the training loss can be reduced to 0.188 5 and the AP value can reach 0.780 2 in the case of 20 000 iterations, achieving good results.
Key words : machine learning;deep learning;CNN;road cracks;Faster-RCNN

0 引言

    近幾十年公路在中國得到蓬勃發展,保養維護也日益成為一個問題,需要定期對路面狀況進行檢查,以便制定相應的維護策略,其中重要的一項指標是路面裂縫。若能在裂縫的出現初期就能發現,并及時跟蹤它的發展情況,那么它的維護費用將大大降低。如何在不影響正常的交通情況下對整段路面進行實時的監測,成為亟待解決的一大難題。傳統的基于人工視覺的識別方法越來越不能適應高速公路發展的要求,其耗人力、耗時、危險、花費高、效率低,還影響正常的交通。計算機高性能處理器、大容量存儲器以及圖像處理技術的快速發展,使得路面裂縫的實時自動識別與識別技術成為可能。文獻[1]提出基于改進K-means算法的不均勻光照下道路裂縫識別,文獻[2]對基于數字圖像的混凝土道路裂縫識別方法進行了描述,傳統的裂縫目標識別算法有基于SVM[3-4]、HOG[5]特征和DPM[6]等多種方法,但這些方法在識別過程中分多個階段進行識別,精度不高且檢測速度慢。針對傳統的裂縫目標識別方法存在的不足,本文提出一種基于Faster-RCNN[7](Faster Region-Convolutional Neural Network)的道路裂縫識別方法,不僅可以自動提取裂縫特征,而且在識別精度和檢測速度方面也取得了良好的效果。




本文詳細內容請下載:http://m.rjjo.cn/resource/share/2000002900




作者信息:

李太文,范昕煒

(中國計量大學 質量與安全工程學院,浙江 杭州310000)

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产精品无码久久综合网 | 成人黄页| 在线精品亚洲欧洲第一页 | 亚洲欧洲日产国码一级毛片 | 日韩亚洲一区中文字幕 | 免费一级特黄a | 韩国免费a级毛片 | 成年女人免费又黄又爽视频 | 看片网站在线 | 国产a级三级三级三级 | 亚洲精品综合一区二区 | 国产三级网站 | 日本三片在在线播放 | 国产精品久久久精品三级 | 国产精品午夜波多野结衣性色 | 亚洲精品久久久久综合中文字幕 | 性欧美高清久久久久久久 | 中文无码日韩欧免费视频 | 亚洲国产精品网站久久 | 欧美色视频在线观看 | 亚洲欧美日本国产综合在线 | 91精品一区国产高清在线 | 成人91在线 | 日本久久综合 | 国产成在线观看免费视频成本人 | 黄色免费三级 | 99综合在线 | 亚洲图片 自拍偷拍 | 精品免费久久久久国产一区 | 欧美一区二三区 | 亚洲国产爱久久全部精品 | 国产精品成久久久久三级 | 欧美精品xxx | caoporen在线视频入口 | 美女国产福利视频 | 日本aaaa片毛片免费 | 91久久精品国产91久久性色tv | 久久久www成人免费精品 | 久久国内精品自在自线400部o | 国产一区视频在线播放 | 精品在线视频播放 |