《電子技術應用》
您所在的位置:首頁 > 測試測量 > 設計應用 > 基于YOLO改進殘差網絡結構的車輛檢測方法
基于YOLO改進殘差網絡結構的車輛檢測方法
2020年信息技術與網絡安全第9期
胡臣辰,陳賢富
中國科學技術大學 微電子學院,安徽 合肥230027
摘要: 針對車輛檢測任務,設計更高效、精確的網絡模型是行業研究的熱點,深層網絡模型具有比淺層網絡模型更好的特征提取能力,但構建深層網絡模型時將導致梯度消失、模型過擬合等問題,應用殘差網絡結構可以緩解此類問題?;赮OLO算法,改進殘差網絡結構,加深網絡層數,設計了一種含有68個卷積層的卷積神經網絡模型,同時對輸入圖像進行預處理,保證目標在圖像上不變形失真,最后在自定義的車輛數據集上對模型進行訓練與測試,并將實驗結果與YOLOV3模型進行對比,實驗表明,本文設計的模型檢測精準度(AP)達90.63%,較YOLOV3提高了4.6%。
中圖分類號: TP393
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2020.09.011
引用格式: 胡臣辰,陳賢富. 基于YOLO改進殘差網絡結構的車輛檢測方法[J].信息技術與網絡安全,2020,39(9):56-60.
Vehicle detection method based on improved residual network structure of based on YOLO
Hu Chenchen,Chen Xianfu
Institute of Microelectronics,University of Science and Technology of China,Hefei 230027,China
Abstract: For vehicle detection task, the design of more efficient and accurate network model is a hot research. Deep network model has better feature extraction capabilities than shallow network model, but will cause the gradient to disappear and the model to overfit and other problems. Application of residual network structure can alleviate such problems. Based on the YOLO algorithm, this paper improves the residual network structure and deepens the number of network layers. A convolutional neural network model with 68 convolutional layers is designed. At the same time, the input image is preprocessed to ensure that the target is not deformed or distorted on the image. Finally, the model is trained and tested on a custom vehicle data set, and the experimental results are compared with the YOLOV3 model. The experiment shows that the model detection accuracy(AP) designed in this paper reaches 90.63%, which is 4.6% higher than YOLOV3.
Key words : object detection;YOLO;residual network;deep learning

0 引言

    車輛是目標檢測任務中的重要對象之一,在自動駕駛、目標追蹤等領域有著十分重要的應用。以梯度方向直方圖(Histogram of Oriented Gradient,HOG)和支持向量機(Support Vector Machine,SVM)結合的傳統目標檢測算法先計算候選框內圖像梯度的方向信息統計值,再通過正負樣本訓練SVM,使用傳統方法受限于候選框提取效率、HOG特征尺度魯棒性,在實時性以及遮擋目標檢測等諸多方面有著明顯缺陷[1]。近年來,基于深度學習的目標檢測方法以強特征提取能力、高檢測率取得了驚人的成果。近年來深度學習網絡在計算機視覺上因AlexNet在2012年的ImageNet大賽中大放異彩而進入飛速發展。2014年VGGNet在追求深層網絡的性能時,發現增加網絡的深度會提高性能,但是與此同時帶來的梯度消失問題不可避免。2015年ResNet網絡較好地解決了這個問題,深層殘差網絡可以減少模型收斂時間、改善尋優過程,但應用尺度大的卷積核的同時增加了網絡模型的參數量與計算量,降低了模型的訓練與檢測速度[2]。

    計算機視覺中的目標檢測任務關注圖像中特定目標的位置信息,現有方法分為two-stage和one-stage兩類。two-stage方法先產生包含目標的候選框,再通過卷積神經網絡對目標進行分類,常見的方法有RCNN、Fast-RCNN、Faster-RCNN。one-stage方法直接使用一個卷積網絡對給定輸入圖像給出檢測結果,以YOLO為代表的one-stage目標檢測方法在檢測時,將候選框的生成與目標的分類回歸合并成一步,基于YOLO的檢測算法大大提高了檢測速度,但檢測精度仍有待提高[3]。本文選擇在基于YOLO方法的基礎上改進主干網絡的殘差網絡結構,設計了一種新的網絡模型,經實驗表明提高了檢測準確率。




本文詳細內容請下載:http://m.rjjo.cn/resource/share/2000003099




作者信息:

胡臣辰,陳賢富

(中國科學技術大學 微電子學院,安徽 合肥230027)

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 91精品国产综合久久香蕉 | 精品在线播放 | 国产美女视频一区 | 亚洲va在线va天堂va四虎 | 99久久99久久精品免费看子伦 | 国产精品人伦久久 | 不卡国产视频 | 国产精品视频免费一区二区三区 | 亚洲欧美日韩综合二区三区 | 乱子伦一级在线现看 | 日本综合欧美一区二区三区 | 欧美视频在线观 | 久久免费小视频 | 91精品国产免费网站 | 欧美日韩精品一区二区三区 | 国产精品夜色视频一级区 | 日韩一品在线播放视频一品免费 | 国产激情一级毛片久久久 | 色婷婷色综合激情国产日韩 | 亚洲福利视频一区二区三区 | 亚洲天堂久久精品 | 日韩一区二区在线免费观看 | 美女又爽又黄视频 | 久青草视频在线 | 国产成人免费片在线视频观看 | 400部大量精品情侣网站 | 久久精品欧美日韩精品 | 碰碰碰精品视频在线观看 | 在线观看 a国v| 久久久久欧美精品网站 | 久久―日本道色综合久久 | 在线男人天堂 | 日韩精品一区二区三区在线观看 | 久久成人免费观看全部免费 | 国产午夜毛片一区二区三区 | 99久久精品免费看国产一区二区 | 国产真实孩交 | 毛片在线不卡 | 日韩一级欧美一级毛片在线 | 婷婷三级| 国产欧美日本亚洲精品五区 |