《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 一種基于SSD與FRN相結合的密集連接行人檢測算法
一種基于SSD與FRN相結合的密集連接行人檢測算法
2020年信息技術與網(wǎng)絡安全第12期
馮婷婷,葛華勇,孫家慧
東華大學 信息科學與技術學院,上海201620
摘要: 現(xiàn)實場景行人的復雜性和多樣性使得行人檢測成為計算機視覺領域中一個既具有研究價值又極具挑戰(zhàn)性的熱門課題,為提高其準確性,提出一種基于SSD(Single Shot Multibox Detector)與FRN(Filter Response Normalization)相結合的密集連接行人檢測算法,將串聯(lián)式的SSD基礎網(wǎng)絡修改為引入上下文語義信息的多層融合的密集連接的FRN網(wǎng)絡結構,運用聚類思想設置適宜行人尺度的候選框,并且根據(jù)行人尺寸的統(tǒng)計分布規(guī)律調整不同檢測層的縮放因子,從而實現(xiàn)端到端訓練。在融合數(shù)據(jù)集和VOC2007TEST數(shù)據(jù)集上驗證該模型的性能,相比于SSD方法,該方法準確率AP(Average Precision)分別提高5.8%、2.9%,具有更高的準確性和魯棒性。
中圖分類號: TP301.6
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2020.12.010
引用格式: 馮婷婷,葛華勇,孫家慧. 一種基于SSD與FRN相結合的密集連接行人檢測算法[J].信息技術與網(wǎng)絡安全,2020,39(12):56-60,66.
A densely connected pedestrian detection algorithm based on the combination of SSD and FRN
Feng Tingting,Ge Huayong,Sun Jiahui
School of Information Science and Technology,Donghua University,Shanghai 201620,China
Abstract: The complexity and diversity of pedestrians in real scenes make pedestrian detection a hot topic with both research value and challenge in the field of computer vision. In order to improve its accuracy, this paper proposes a densely connected pedestrian detection algorithm based on the combination of SSD and FRN, modifies the serial SSD basic network into a multi-layered densely-connected FRN network structure that introduces contextual semantic information, and uses clustering ideas to set candidate boxes suitable for pedestrian scale, and adjusts the scaling factors of different detection layers according to the statistical distribution law of pedestrian size, so as to achieve end-to-end training. The performance of the model is verified on the fusion dataset and the VOC2007TEST dataset. Compared with the SSD method, the accuracy of the method AP is improved by 5.8% and 2.9% respectively, with higher accuracy and robustness.
Key words : pedestrian detection;dense connection;clustering algorithm;SSD;FRN

0 引言

    行人檢測作為計算機視覺技術的重要分支和智能化產(chǎn)品的核心技術,受到了學術界和工業(yè)界的廣泛關注,其能夠從圖像或視頻中識別出行人,并給出其具體的位置,在車輛輔助駕駛和行人重識別技術等方面有巨大的研究價值和應用前景。行人檢測作為車輛輔助駕駛技術中不可或缺的一部分,可以及時檢測出車輛前方的行人并針對實際狀況及時提醒司機或者緊急制動,從而避免交通事故的發(fā)生;在刑偵工作中,刑偵人員經(jīng)常要瀏覽多個攝像頭中的視頻,此時先進行行人檢測判斷視頻中是否存在行人,把視頻中的行人篩選出來,再利用行人重識別技術查找某個特定的行人在哪些攝像頭曾經(jīng)出現(xiàn)過,可為刑偵工作帶來便利。

    近十幾年間,基于深度學習的行人檢測技術取得了巨大進步,能夠自動學習從圖像像素中提取的基于邊緣的低級特征和基于語義信息的高級特征。其分為兩階段檢測算法和單階段檢測算法。在兩階段檢測算法中,文獻[1]提出了基于區(qū)域的卷積神經(jīng)網(wǎng)絡(Region based Convolutional Neural Network,R-CNN),文獻[2]提出了空間金字塔池化(Spatial Pyramid Pooling,SPP)網(wǎng)絡,文獻[3]提出了快速基于區(qū)域的卷積網(wǎng)絡方法(Fast-RCNN),文獻[4-5]提出了Faster-RCNN。這些目標檢測算法的訓練過程步驟繁瑣,檢測速度慢,沒有達到實時的檢測標準。基于此,以REDMON J[6]提出的統(tǒng)一實時目標檢測框架(You only look once,Yolo)和以Liu Wei[7]提出的單階段多尺度檢測器(Single Shot MultiBox Detector,SSD)框架為代表的單階段檢測算法由此產(chǎn)生。Yolo存在定位精度、召回率等較低的問題,泛化能力相對較弱,為了解決該算法的缺陷,2016年Liu Wei等提出SSD算法進行多尺度檢測,在保證速度的同時提高了檢測精度,但是其對于小目標檢測不精準,加之在實際生活中,由于行人穿著、姿態(tài)、尺度、視角、光照和復雜背景等多方面原因,在檢測精度及速度方面的提高仍是研究重點。由此針對行人多尺度問題,本文提出一種FRN提升模型性能的密集連接的SSD行人檢測算法,嘗試引入不依賴批尺寸大小的上下文語義信息的多層特征融合的密集連接網(wǎng)絡結構,結合行人檢測任務特點進行優(yōu)化與改進。




本文詳細內(nèi)容請下載:http://m.rjjo.cn/resource/share/2000003230




作者信息:

馮婷婷,葛華勇,孫家慧

(東華大學 信息科學與技術學院,上海201620)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉載。
主站蜘蛛池模板: 米奇精品一区二区三区 | 久久久久久网站 | 成在线人永久免费播放视频 | 九九99九九视频在线观看 | 美女黄频网站 | 草在线视频 | 中国欧美一级毛片免费 | 狠色狠狠色狠狠狠色综合久久 | 在线观看亚洲精品专区 | a一级网站 | 九九99香蕉在线视频免费 | 青木玲中文字幕一区二区 | 亚洲精品综合久久中文字幕 | 成人国产网站v片免费观看 成人国产午夜在线视频 | 国产一区亚洲二区 | 97在线免费视频 | 日韩欧美精品在线观看 | 天天插夜夜爽 | 成人午夜亚洲影视在线观看 | 男人桶女人暴爽的视频 | 亚洲视频在线观看网址 | 精品国产96亚洲一区二区三区 | 亚洲国产天堂久久精品网 | 欧美精品成人一区二区在线观看 | 女女同性一区二区三区四区 | 免费黄色毛片视频 | 国产精品免费观看视频播放 | 国产在线日韩在线 | 特级淫片日本高清视频 | 欧美久色 | 国产亚洲区 | 久久人| 中文字幕二区三区 | 在线不卡一区二区 | 国产a∨一区二区三区香蕉小说 | 精品国产网站 | 欧美国产精品不卡在线观看 | 国产一区二区精品在线观看 | 国产高清在线精品一区a | 欧美激情精品久久久久久久久久 | 亚洲欧美自拍偷拍 |