《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 基于梯度優(yōu)化的大語言模型后門識別探究
基于梯度優(yōu)化的大語言模型后門識別探究
網(wǎng)絡(luò)安全與數(shù)據(jù)治理
陳佳華1,陳宇2,曹婍3
1 電子科技大學信息與軟件工程學院,四川成都610066;2 北京郵電大學計算機學院,北京100876; 3 中國科學院計算技術(shù)研究所智能算法安全重點實驗室,北京100190
摘要: 隨著大語言模型的流行并且應(yīng)用在越來越多的領(lǐng)域,大語言模型的安全問題也隨之而來。 通常訓練大語言模型對數(shù)據(jù)集以及計算資源有著極為苛刻的要求,所以有使用需求的用戶大部分都直接利用網(wǎng)絡(luò)上開源的數(shù)據(jù)集以及模型,這給后門攻擊提供了絕佳的溫室。后門攻擊是指用戶在模型中輸入正常數(shù)據(jù)時模型表現(xiàn)像沒有注入后門時一樣正常,但當輸入帶有后門觸發(fā)器的數(shù)據(jù)時模型輸出異常。防止后門攻擊的有效方法就是進行后門識別。目前基于梯度的優(yōu)化方法是比較常用的,但使用這些方法時內(nèi)部影響因子的設(shè)定對識別效果具有一定影響。文章就詞令牌數(shù)量、最鄰近數(shù)量、噪聲大小進行了實驗測量和作用機制的分析,以便為后續(xù)使用這些方法的研究者提供參考。
中圖分類號:TP309文獻標識碼:ADOI:10.19358/j.issn.2097-1788.2023.12.003
引用格式:陳佳華,陳宇,曹婍.基于梯度優(yōu)化的大語言模型后門識別探究[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(12):14-19.
Research on gradient optimization based backdoor identification of large language model
Chen Jiahua1,Chen Yu 2,Cao Qi3
1 School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu 610066, China; 2 School of Computer Science,Beijing University of Posts and Telecommunications, Beijing 100876, China; 3 CAS Key Laboratory of AI Security, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
Abstract: With the popularity of large language models (LLM) and their application in more fields, the security concerns of large language models also arise. In general, training LLM has extremely demanding requirements for datasets and computing resources, so most users who need to use them directly use opensource datasets and models on the Internet, which provides an excellent greenhouse for backdoor attacks. A backdoor attack is when a user enters normal data into the model as if it were not injected with a backdoor, but the model output is abnormal when data with a backdoor trigger is input. An effective way to prevent backdoor attacks is to perform backdoor identification. At present, gradientbased optimization methods are commonly used, but the setting of internal impact factors has a great impact on the recognition effect when using these methods. In this paper, the word token length, the number of nearest neighbors, and the noise scale are measured experimentally and the mechanism of action is analyzed, so as to provide reference for researchers who use these methods in the future.
Key words : large language models; backdoor attack; gradient based backdoor identification; impact factor

引言

近年來,大語言模型越來越多地運用在了人們的日常生活中,也誕生了很多著名的模型比如ChatGPT、GPT4[1]、LLaMA[2]等。這些模型能夠進行廣泛的任務(wù)如文本總結(jié)、情感分析等,有研究表明大模型具有小模型沒有的能力[3],如推理能力等。大語言模型也成為現(xiàn)在研究的熱點之一。但任何事物都有它的兩面性。大語言模型的訓練需要有足夠且良好的訓練數(shù)據(jù)集,且由于其龐大的參數(shù)量,對計算資源的需求也極高。例如GPT35具有1 750億的參數(shù)量,使用數(shù)據(jù)集達到了45 TB的大?。?]。在大部分情況下,使用者可能會選擇直接使用網(wǎng)絡(luò)上開源的大模型來進行下游任務(wù)的完成,或者使用領(lǐng)域特定數(shù)據(jù)集在開源大模型的基礎(chǔ)上進行微調(diào)從而定制化領(lǐng)域特定模型。在這種大環(huán)境下,開源大模型如果存在安全問題將造成嚴重的危害。


作者信息

陳佳華1,陳宇2,曹婍3

(1 電子科技大學信息與軟件工程學院,四川成都610066;2 北京郵電大學計算機學院,北京100876;

3 中國科學院計算技術(shù)研究所智能算法安全重點實驗室,北京100190)


文章下載地址:http://m.rjjo.cn/resource/share/2000005871



weidian.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 成人高清无遮挡免费视频软件 | 亚洲精品国产一区二区在线 | 国产乱色在线观看 | 成人高清在线观看 | 91久久综合九色综合欧美98 | 欧美成人吃奶高清视频 | 在线观看 一区 | 精品久久久日韩精品成人 | 日韩毛片在线免费观看 | 欧美黄视频 | 国产成人18黄网站免费网站 | 精品久久久久国产 | 成年女人毛片免费视频永久vip | 亚洲综合亚洲综合网成人 | 97在线观看| a毛片全部免费播放 | 免费女人18毛片a级毛片视频 | 久久中文字幕在线观看 | 国产成人99精品免费观看 | 亚洲精品推荐 | 亚洲 中文 欧美 日韩 在线人 | 欧美一级毛片片免费孕妇 | 大量真实偷拍情侣视频野战 | 久久久久久久网站 | 欧美曰韩一区二区三区 | 欧美精品一级毛片 | 免费播放欧美毛片欧美aaaaa | 国产一区二区三区在线观看精品 | 九九久久精品国产 | 国产免费爱在线观看视频 | 激情6月丁香婷婷色综合 | 国内成人精品亚洲日本语音 | 久久久视 | 国产中文久久精品 | 日韩在线无 | 亚洲在线一区二区三区 | 国产在线不卡午夜精品2021 | 免费手机黄色网址 | 国产高清在线精品一区在线 | 亚洲在线观看网站 | 寡妇一级a毛片免费播放 |