《電子技術應用》
您所在的位置:首頁 > 可編程邏輯 > 設計應用 > 如何實現微控制器與FPGA的接口設計
如何實現微控制器與FPGA的接口設計
摘要: 將近一半的嵌入式設計用到FPGA,僅次于微控制器。FPGA可用于執行任何膠合邏輯、自定義IP 、計算密集型算法加速器。通過采取一些處理任務, FPGA可以幫助提高系統性能,從而使單片機從周期密集的任務中騰出部分時間。FPGA還提供優良的性能特點和更的靈活性,以適應不斷變化的標準。
關鍵詞: FPGA 微控制器 接口
Abstract:
Key words :


        將近一半的嵌入式設計用到FPGA" target="_blank">FPGA,僅次于微控制器FPGA可用于執行任何膠合邏輯、自定義IP 、計算密集型算法加速器。通過采取一些處理任務, FPGA可以幫助提高系統性能,從而使單片機從周期密集的任務中騰出部分時間。FPGA還提供優良的性能特點和更的靈活性,以適應不斷變化的標準。

         基于FPGAMCU設計有兩種基本實現方式:一種是在FPGA邏輯結構中內置MCU軟核;一種是使用基于離散FPGA的標準MCU產品。FPGA內置軟核有效果,但與標準MCU相比,該方式實現一個微控制器是比較昂貴和耗電的。尤其是使用基于32位ARM的內核。結果,基于FPGA內置軟核的FPGA MCU設計只占三分之一。其余的三分之二是基于離散FPGA的標準微控制器產品。

        標準微控制器產品和FPGA都沒有有效的發展兩者之間的通信,甚至使用不同的語言。因此,它們之間的接口將是一種挑戰。FPGA的沒有任何專門的邏輯電路來與微控制器通訊。首先,這種邏輯模塊的設計必須從零開始。其次,微控制器和FPGA之間的通信是異步的。特別是需要使單片機與FPGA時鐘域同步。最后,無論是接口,還是微控制器總線,都存在瓶頸問題。MCU和FPGA之間的信息傳遞通常需要在MCU總線上循環,且通常占用資源(PIO or EBI)影響傳遞速度。因此必須注意避免與外部SRAM或閃存和微控制器總線的瓶頸問題。

         MCU的FPGA接口基本上有三種硬件選擇:可編程的I / O(PIO);外部總線接口( EBI的),如果有的話;最后,MCU之間的一個專門的接口,先進的高速總線( AHB )和FPGA 。該方法的使用依賴于高端應用和市場期望。

PIO接口

        通過PIO 連接MCU和FPGA相對簡單數據傳輸來說比較簡單,包括傳輸32位的地址, 32位數據,還有一些控制信號的控制。這就需要一個32位的PIO和一個2位PIO(圖1) 。

 

圖1 PIO連接FPGA

         為了將數據傳輸到FPGAPIO中的雙向緩沖器方向必須設置為輸出。數據傳輸到FPGA的軟件算法實現如下:

PIO_DATA = ADDRESS; // Pass the address to write
PIO_CTROL = START | WR; // Send start of address cycle
PIO_CTROL = CLEAR; // Clear PIO ctrl, this ends the address cycle
PIO_DATA = DATA; // Set data to transfer
PIO_CTROL = START; // Data is ready in PIO
PIO_CTROL = CLEAR; // This ends the data cycle

        從FPGA讀取數據的方法相似。同樣,PIO中的緩沖區首先必須設置為輸出,然后改變方向為輸入從FPGA讀取數據,下面是執行代碼:

PIO_DATA = ADDRESS; // Set the address to read
PIO_CTROL = START | RD; // Send start of address cycle
PIO_CTROL = CLEAR; // Clear PIO ctrl, this ends the address cycle
PIO_DATA_DIR = INPUT; // Set PIO-Data direction as input to receive the data
DELAY(WAIT_FOR_FPGA); // wait for the FPGA to send the data
DATA_FROM_FPGA = *PIO_DATA; // Read data from FPGA

        上述算法是一個基本的傳輸,更先進的算法是必要在ARM微控制器和FPGA之間建立適當的通信。特別要注意的是,確保數據的可靠性,例如沒有因高速或等待周期造成資料遺失等。

        訪問時間計算的總和:

T訪問-PIO=t1+處理階段+t2+數據階段

        使用最大優化的GCC編譯器,系統大約需要55個AHB周期向FPGA執行寫操作(圖2)。

 

 

圖2 PIO向FPGA 寫數據

 

         假設t2(FPGA的等待響應時間)也大約是25個 AHB周期,系統大約需要85個AHB周期從FPGA進行讀操作(圖3)。

 

 

圖3 PIO從FPGA讀取數據

 

         MCU自身接口連接非常簡單和直截了當。然而,在FPGA里必須用特殊的邏輯來解碼所有的由PIO生成的業務流。在大多數情況下,微控制器的業務流是完全異步。因此,FPGA必須能夠從微控制器中過采樣控制信號;否則,FPGA將錯過時間窗口且業務流將不會最終到達FPGA內。

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产精品亚洲视频 | 欧美韩国xxx | 黄网在线免费 | 免费99视频有精品视频高清 | 午夜免费福利网站 | 亚洲欧美日韩一级特黄在线 | 久久精品中文字幕不卡一二区 | 亚洲视频手机在线 | 99久久九九 | 亚洲精品国产字幕久久不卡 | 2022国产精品网站在线播放 | 成年人视频在线免费播放 | 欧美嫩交| 五月色婷婷综合开心网亚 | 国产一区亚洲欧美成人 | 日本黄页免费 | 手机在线看a | 亚洲日本激情 | 国产日韩欧美在线 | 欧美高清在线精品一区二区不卡 | 成人网视频免费播放 | 国产一区二区三区免费在线视频 | 高清日本在线成人免费视频 | 成人中文字幕一区二区三区 | 久草久视频| 91精品国产91热久久久久福利 | 欧美一级黄色毛片 | 久久国产影视免费精品 | 中国一级毛片免费观看 | 国产色手机在线观看播放 | 免费福利入口在线观看 | 久久看精品 | 久草手机视频在线 | 热99re久久精品香蕉 | 国产视频手机在线 | 亚洲国产成人久久午夜 | 久久综合色播 | 99亚洲精品 | 亚洲欧美一区二区视频 | 91精品91| 久久亚洲国产最新网站 |