《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 測(cè)試測(cè)量 > 設(shè)計(jì)應(yīng)用 > 用于自動(dòng)視力檢測(cè)的手勢(shì)識(shí)別方法研究
用于自動(dòng)視力檢測(cè)的手勢(shì)識(shí)別方法研究
信息技術(shù)與網(wǎng)絡(luò)安全
何啟莉,何家峰,郭 娟
(廣東工業(yè)大學(xué) 信息工程學(xué)院,廣東 廣州510006)
摘要: 對(duì)于自動(dòng)視力檢測(cè)系統(tǒng),手勢(shì)識(shí)別是關(guān)鍵問題,但是采用傳統(tǒng)卷積神經(jīng)網(wǎng)絡(luò)模型識(shí)別手勢(shì)存在過擬合、計(jì)算量大等問題。提出了一種GR-AlexNet模型,對(duì)AlexNet網(wǎng)絡(luò)模型進(jìn)行了適應(yīng)性修改和優(yōu)化:為了加快計(jì)算速度,用7×7、5×5、1×1的三個(gè)小卷積核替代原來的11×11的大卷積核,并刪除LRN層和一個(gè)全連接層;為了減輕過擬合效應(yīng),在每次卷積后都加上一個(gè)Dropout優(yōu)化。對(duì)同一數(shù)據(jù)集分別使用LeNet模型、AlexNet模型、VGG16模型與GR-AlexNet模型進(jìn)行對(duì)比實(shí)驗(yàn)。實(shí)驗(yàn)表明GR-AlexNet模型在識(shí)別準(zhǔn)確率上較傳統(tǒng)的模型有一定的提高,能抑制過擬合現(xiàn)象,并且具有更快的訓(xùn)練速度。
中圖分類號(hào): TP391.41
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2021.03.006
引用格式: 何啟莉,何家峰,郭娟. 用于自動(dòng)視力檢測(cè)的手勢(shì)識(shí)別方法研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(3):32-37,47.
Research on gesture recognition method for automatic vision detection
He Qili,He Jiafeng,Guo Juan
(School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China)
Abstract: For automatic vision detection systems, gesture recognition is a key issue, but the traditional convolutional neural network model to recognize gestures has problems such as over-fitting and large amount of calculation. This paper proposes a GR-Alexnet model, which adaptively modifies and optimizes the Alexnet network model. In order to speed up the calculation, three small convolution kernels of 7×7, 5×5, and 1×1 are used to replace the original 11×11 large convolution kernel, and delete the LRN layer and a fully connected layer; in order to reduce the over-fitting effect, a dropout optimization is added after each convolution. The LeNet model, the Alexnet model ,the VGG16 model and the GR-Alexnet model were used for comparative experiments on the same data set. Experiments show that the GR-Alexnet model has a certain improvement in recognition accuracy compared with the traditional model, can suppress the over-fitting phenomenon, and has a faster training speed.
Key words : automatic vision detection;OpenCV;gesture recognition;Gesture Recognition AlexNet(GR-AlexNet)

0 引言

隨著人工智能技術(shù)的進(jìn)步,智能化設(shè)備逐漸融入到人們生活的方方面面。傳統(tǒng)的醫(yī)療檢測(cè)儀器逐漸被智能電子儀器所替代,如心率測(cè)量儀、血壓檢測(cè)儀等,然而視力檢測(cè)這一基本的體檢項(xiàng)目仍然沿用傳統(tǒng)的人工檢測(cè)方法,檢測(cè)效率低,消耗人力且極不方便。隨著計(jì)算機(jī)視覺技術(shù)迅速發(fā)展,手勢(shì)識(shí)別也逐漸成為智能人機(jī)交互的重要研究領(lǐng)域[1-4]。本文通過對(duì)視力檢測(cè)進(jìn)行手勢(shì)識(shí)別,達(dá)到自動(dòng)化視力檢測(cè)的目的。





本文詳細(xì)內(nèi)容請(qǐng)下載:http://m.rjjo.cn/resource/share/2000003422




作者信息:

何啟莉,何家峰,郭  娟

(廣東工業(yè)大學(xué)  信息工程學(xué)院,廣東 廣州510006)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 97人摸人人澡人人人超一碰 | 色在线网站免费观看 | 黄色网址在线免费观看 | 男女视频在线观看免费高清观看 | 亚洲精品国产男人的天堂 | 美女三级网站 | 俄罗斯毛片免费大全 | 国产精品毛片天天看片 | 在线观看精品视频网站www | 一区二区成人国产精品 | 国产一区二区三区影院 | 青青青青爽视频在线播放 | 久久精品午夜 | 国产日韩欧美 | 国产一区二区三区视频在线观看 | 99精品视频一区在线视频免费观看 | 日韩一区二区三 | 三级色网| 喷潮白浆直流在线播放 | 成年人在线免费网站 | 成年人在线观看视频免费 | 久久国产成人 | 91久久精品国产亚洲 | 最新日韩欧美不卡一二三区 | 91视频18| 亚洲一区二区三区免费 | 欧美日韩一区二区在线 | 99免费在线观看视频 | 草久在线播放 | 日韩中文字幕在线亚洲一区 | 国产好片无限资源 | 99国产视频| 中文字幕日韩精品有码视频 | 欧美日韩精品一区二区另类 | 男女扒开双腿猛进入免费网站 | 天天看夜夜 | 亚洲第一毛片 | 亚洲国产天堂久久九九九 | 三级黄色免费看 | 亚洲综合天堂网 | 欧美精品久久一区二区三区 |