《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于GrabCut的改進分割算法
基于GrabCut的改進分割算法
信息技術與網絡安全 10期
王 茜,何小海,吳曉紅,吳小強,滕奇志
(四川大學 電子信息學院 圖像信息研究所,四川 成都610065)
摘要: 針對GrabCut算法對于特征不明顯、紋理復雜的圖像分割效果不理想,且需要用戶交互的問題,提出一種基于GrabCut的改進分割算法。首先,運用圖像增強,對特征不明顯的圖像進行改善,提高圖像質量;然后,利用YOLOv4網絡對圖像進行目標檢測,獲取前景目標所在矩形框位置,從而減少用戶操作;其次,在高斯混合模型(GMM)中加入圖像像素的位置信息和局部二值模式算子(LBP)提取的像素紋理特征信息,優化高斯混合模型參數,改進GrabCut算法,實現圖像優化分割;最后,將分割圖像掩膜與原始圖像結合,得到原始圖像。實驗結果表明,對特征不明顯、紋理信息復雜的圖像,該算法分割效果更優。
中圖分類號: TP391.41
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.10.007
引用格式: 王茜,何小海,吳曉紅,等. 基于GrabCut的改進分割算法[J].信息技術與網絡安全,2021,40(10):43-47,52.
An improved segmentation algorithm based on GrabCut
Wang Qian,He Xiaohai,Wu Xiaohong,Wu Xiaoqiang,Teng Qizhi
(Institute of Image Information, School of Electronics and Information Engineering,Sichuan University, Chengdu 610065,China)
Abstract: To slove the problem that GrabCut does not have satisfactory segmentation effect for images with obscure features and complex textures and it needs user interaction, an improved segmentation algorithm based on GrabCut was proposed. Firstly, image enhancement was used, to improve the image with less detailed features. Secondly, YOLOv4 network was trained and the image was put in YOLOv4 to get the rectangular position of the foreground target. Thirdly, Gaussian Mixing Model(GMM) was incorporated location information of image pixels and texture feature information extracted by LBP operator, to optimize GMM model parameters and improve GrabCut algorithm. Finally, the original segmented image was obtained by combining the segmented image mask with the original image. The experimental results show that the proposed method performs better on images with less detailed features and complex texture information.
Key words : GrabCut;k-means;image enhancement;image segmentation

0 引言

圖像分割是圖像處理的重要手段之一[1],是將圖像分為不同的區域,區域內具有一定的相似性,不同區域之間的特征差異較為明顯。2001年,Boykov等[2]提出GraphCut算法,用戶在待分割圖像背景和前景上畫線,指明少量前景像素和背景像素,算法建立s-t圖,利用最小割最大流實現圖像分割。GraphCut算法采用灰度直方圖,無法分割彩色圖像。針對該問題,Rother等[3]提出GrabCut算法,用戶用矩形框標記前景位置,通過k-means將像素聚類為k類,初始化k個GMM模型,構建能量函數并利用該函數對圖像進行分割。由于GrabCut算法操作簡單,分割精度較高而被廣泛關注和應用,國內外的許多學者對該算法進行了改進。周良芬等[4]采用二次分水嶺對梯度圖像做預處理,增強圖像邊緣點,再利用熵的特性優化能量分割函數,提高圖像分割精度,但是增加了算法的復雜程度。董茜等[5]通過SLIC超像素算法對圖像進行分割,利用分割的超像素圖建立加權圖,減少節點數,提高分割效率,但傳統SLIC在紋理明顯處會出現不規則超像素塊。白雪冰等[6]將圖像從RGB空間轉化到Lab空間,再利用SLICO算法對圖像進行預處理,改善GMM模型參數,使分割不受背景凹凸紋理的干擾,可優化分割,但是仍然存在少部分過分割的問題。楊小鵬等[7]采用Faster R-CNN[8]減少用戶交互,融入圖像位置信息提高GrabCut分割效果,但對紋理復雜的圖像分割效果無明顯改善。劉靜等[9]針對背景復雜、細節豐富的皮影提取問題,采用相對總變差平滑的方法優化GrabCut分割,由于算法具有交互性,主觀的選取會影響分割結果。詹琦梁等[10]利用Mask RCNN算法對待分割圖像進行初步分割,再結合SLIC超像素分割得到的超像素塊,獲得初始三元圖,最后利用GrabCut算法對其進行分割,客觀上提高了分割精確度,卻消耗了更多的運行時間。




本文詳細內容請下載:http://m.rjjo.cn/resource/share/2000003802





作者信息:

王  茜,何小海,吳曉紅,吳小強,滕奇志

(四川大學 電子信息學院 圖像信息研究所,四川 成都610065)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 精品国产91久久久久 | 久久九九亚洲精品 | 日产乱码精品一二三区 | 国产成人资源 | 欧美一区二区三区在线播放 | 亚洲精品98久久久久久中文字幕 | 日韩精品一区二区三区毛片 | 国内久久久 | 国产成人啪精品午夜在线观看 | 全部孕妇毛片丰满孕妇孕交 | 色狠狠色综合吹潮 | 日本一级在线播放线观看免 | 精品欧美一区二区三区免费观看 | 欧美日韩国产高清一区二区三区 | 欧美美女视频网站 | 91精品全国免费观看 | 久青草免费视频 | 黑色丝袜美美女被躁视频 | 娇小性色xxxxx中文 | 成人免费视频社区 | 久久久综合网 | 九九草在线观看 | 久久精品视频在线观看 | 国产91精品一区二区麻豆亚洲 | 一级片在线播放 | 中文字幕欧美在线观看 | 日本亚洲欧美高清专区vr专区 | 又粗又爽又色男女乱淫播放男女 | 国产成人一区二区三区精品久久 | 中文字幕精品视频 | 毛片在线观看视频 | 天天看有黄有色大片 | 一级毛片视频播放 | 亚洲成a人片在线观看中文 亚洲成a人片在线观看中文!!! | 九九精品国产兔费观看久久 | 国产成人精品一区二区视频 | 手机看福利片 | 国产美女视频黄a视频全免费网站 | 欧美日韩亚洲第一页 | 国产视频高清在线观看 | 99久热在线精品视频播 |