《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于深度學習的無監督領域自適應語義分割算法綜述
基于深度學習的無監督領域自適應語義分割算法綜述
電子技術應用
應俊杰1,2,樓陸飛1,2,辛宇1,2
1.寧波大學 信息科學與工程學院, 浙江 寧波315211;2.浙江省移動網應用技術重點實驗室,浙江 寧波315211
摘要: 隨著現代生活逐步智能化,越來越多的應用需要從圖像中推斷相應的語義信息再進行后續的處理,如虛擬現實、自動駕駛和視頻監控等應用。目前的語義分割模型利用大量標注數據進行有監督訓練能達到理想的性能,但模型對與訓練數據不同分布的數據進行推理時,其性能嚴重下降。這意味著一旦應用場景發生變化,就需對新場景的數據進行標注。模型重新利用新數據進行訓練,才能達到正常的性能。這無疑是耗時的、代價昂貴的。為此,領域自適應語義分割算法提供了解決模型在分布不一致數據上語義分割性能下降問題的思路。總結了領域自適應語義分割算法的前沿進展,并對未來研究方向進行展望。
中圖分類號:TP391.4 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.234261
中文引用格式: 應俊杰,樓陸飛,辛宇. 基于深度學習的無監督領域自適應語義分割算法綜述[J]. 電子技術應用,2024,50(1):1-9.
英文引用格式: Ying Junjie,Lou Lufei,Xin Yu. A survey of unsupervised domain adaptive semantic segmentation algorithms based on deep learning[J]. Application of Electronic Technique,2024,50(1):1-9.
A survey of unsupervised domain adaptive semantic segmentation algorithms based on deep learning
Ying Junjie1,2,Lou Lufei1,2,Xin Yu1,2
1.College of Information Science and Engineering, Ningbo University, Ningbo 315211, China; 2.Key Laboratory of Mobile Network Application Technology of Zhejiang Province, Ningbo 315211, China
Abstract: As modern life becomes increasingly intelligent, more and more applications require inferring semantic information from images before proceeding with further processing, such as virtual reality, autonomous driving, and video surveillance. Current semantic segmentation models achieve ideal performance through supervised training with a large amount of annotated data, but their performance severely deteriorates when inferring on data with a distribution different from the training data. This means that once the application scenario changes, new data needs to be annotated and the model needs to be retrained with the new data in order to achieve normal performance. This is undoubtedly time-consuming and expensive. Therefore, domain adaptive semantic segmentation algorithms provide a solution to the problem of the model's performance degradation on data with different distributions. This article summarizes the cutting-edge progress of domain adaptive semantic segmentation algorithms and looks forward to future research directions.
Key words : domain adaptive;semantic segmentation;deep learning

引言

語義分割是計算機視覺的基礎任務之一,它為圖像的每個像素進行類別預測,目的是將圖像分割成若干個帶有語義的感興趣區域,以便后續的圖像理解和分析工作,推動了自動駕駛、虛擬現實、醫學影像分析和衛星成像等領域的發展。近幾年來,語義分割模型的性能有著巨大的提升。然而,模型的性能依賴于大量人工標注的訓練數據,這些數據的標注是十分耗時且代價昂貴的,純人工標注一張圖的時間甚至可能超過一個小時。即使現在使用半自動化標注工具自動生成一部分標注,可以減少標注的時間,但仍然需要人工去調整和檢查自動生成的標注。語義分割模型需要在與訓練數據分布一致的數據上才能獲得優異的性能,而為另一不同分布的數據進行語義標注的代價很大。


本文詳細內容請下載:

http://m.rjjo.cn/resource/share/2000005825


作者信息:

應俊杰1,2,樓陸飛1,2,辛宇1,2

(1.寧波大學 信息科學與工程學院, 浙江 寧波315211;2.浙江省移動網應用技術重點實驗室,浙江 寧波315211)


weidian.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 精品久久久久久中文字幕 | 国产一级第一级毛片 | 欧美13一14sexvideo欧 | 91成人免费观看在线观看 | 人成精品视频三区二区一区 | 欧美一区永久视频免费观看 | 日韩性色 | 日韩美三级 | 国产乱码精品一区二区三区卡 | 久久免费高清 | 一级做a爰片久久毛片美女 一级做a爰片久久毛片免费看 | 久久精品国产只有精品2020 | 免费一极毛片 | 俄罗斯一级毛片免费播放 | 日韩在线视频不卡一区二区三区 | 青青自拍 | 久久免费观看国产精品 | 99在线视频观看 | 国内精品久久久久久久久蜜桃 | japanesetubesexfree | 欧美精品xx | 国产亚洲高清在线精品不卡 | 在线观看 一区 | 欧美三级色 | 国产禁女女网站免费看 | 成人黄色免费网址 | 日韩一级a毛片欧美一级 | 和日本免费不卡在线v | 亚洲 欧美 日韩中文字幕一区二区 | 午夜一区二区福利视频在线 | 免费aa在线观看 男人的天堂 | 欧美一区亚洲二区 | 亚洲国产天堂久久综合网站 | 80日本xxxxxxxxx| 中文字幕 亚洲精品 第1页 | 在线视频精品一区 | 午夜性刺激免费视频观看不卡专区 | 日韩成人精品日本亚洲 | 美女黄视频在线 | 欧美多人三级级视频播放 | 一级黑人 |