《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 惡意代碼可視化分類研究
惡意代碼可視化分類研究
電子技術應用
丁全1,丁伯瑞2,查正朋2,劉德陽3
1.國網安徽省電力有限公司 電力科學研究院; 2.中國科學技術大學 先進技術研究院;3.安慶師范大學 計算機與信息學院
摘要: 新型惡意代碼設計變得日益復雜,傳統的識別并檢測方法已經滿足不了當前的需求。因此,在對BODMAS數據集分析的基礎上,將其進行可視化處理并進行分類。同時考慮到現有惡意代碼可視化分類模型主要依賴全局特征,在卷積神經網絡基礎上設計了一個CA(通道級局部特征關注)模塊和一個MA(多尺度局部特征關注)模塊,構建了兩個新模型,巧妙地結合全局與局部特征。在BODMAS數據集上,新模型在惡意代碼種類識別并分類平均準確率相比于BODMAS數據集論文描述的方法得到了提高,證明了數據集可視化可行性和新模型的有效性,為未來研究提供了重要的數據和實驗基礎。
中圖分類號:TN918;TP183 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.244838
中文引用格式: 丁全,丁伯瑞,查正朋,等. 惡意代碼可視化分類研究[J]. 電子技術應用,2024,50(5):41-46.
英文引用格式: Ding Quan,Ding Borui,Zha Zhengpeng,et al. Research on visualization-based classification of malicious code[J]. Application of Electronic Technique,2024,50(5):41-46.
Research on visualization-based classification of malicious code
Ding Quan1,Ding Borui2,Zha Zhengpeng2,Liu Deyang3
1.Electric Power Science Research Institute, State Grid Anhui Electric Power Co., Ltd.; 2.Institute of Advanced Technology, University of Science and Technology of China; 3.School of Computer and Information, Anqing Normal University
Abstract: The design of new malicious code is becoming increasingly complex, and traditional recognition and detection methods can no longer meet current requirements. Therefore, based on the analysis of the BODMAS dataset, this paper performs visualization processing and classification. At the same time, considering that the existing malware visualization classification models mainly rely on global features, this paper designs a CA (Channel-level local feature Attention) module and a MA (Multi-scale local feature Attention) module based on the convolutional neural network, and constructs two new models that cleverly combine global and local features. On the BODMAS dataset, the new models have achieved an increase in the average accuracy of recognizing and classifying malware types compared to the methods described in the BODMAS dataset paper. This proves the feasibility of dataset visualization and the effectiveness of the new models, providing important data and experimental basis for future research.
Key words : BODMAS dataset;CA module;MA module;visualization of malicious code

引言

隨著互聯網技術的快速發展,計算機病毒已成為全球范圍內的嚴重威脅,給政府、企業和個人用戶的信息安全帶來了巨大風險。根據國家互聯網應急中心統計顯示,2023年11月僅一周接到的涉及黨政機關和企事業單位的漏洞總數23 920個,比上周(20 305個)環比增加18%[1]。而且,不斷涌現的新型惡意代碼,特別是能規避殺毒軟件的變種,對防范惡意代碼的工作提出了極大挑戰。研究對惡意代碼家族進行分類歸納,快速、準確地辨識已知惡意代碼家族及其衍生變種,將極大地加強應對惡意代碼的防范能力。因此,對未知病毒的快速檢測和分類識別成為網絡安全領域亟需解決的問題。

研究惡意代碼家族分類可幫助快速識別已知惡意代碼及其變種,增強防范能力。然而,傳統靜態分析檢測方式容易受加殼、變形影響,動態檢測雖可發現行為,但復雜且耗時。機器學習算法基于提取文件樣本特征,提高檢測精度,但仍需專家干預,無法完全自動化[2]。


本文詳細內容請下載:

http://m.rjjo.cn/resource/share/2000005985


作者信息:

丁全1,丁伯瑞2,查正朋2,劉德陽3

(1.國網安徽省電力有限公司 電力科學研究院,安徽 合肥 230000;

Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 久草a在线 | 高清欧美一级在线观看 | 欧美一级日韩在线观看 | 欧美 亚洲 另类 自拍 在线 | 亚洲第一成年网 | 国产精品久久免费视频 | 日韩国产欧美一区二区三区 | 成人手机在线视频 | 草草视频手机在线观看视频 | 中文国产成人精品久久水 | 国模偷拍在线观看免费视频 | 久久久久免费 | 毛片网站在线播放 | 欧美成人免费大片888 | 91久久夜色精品国产网站 | 亚洲欧美另类自拍第一页 | 久久777国产线看是看精品 | 国产成人精品一区二三区在线观看 | 免费看操片 | 欧美精品一级毛片 | 亚洲第一网站在线观看 | 欧美巨大精品欧美一区二区 | 欧美一级在线观看 | 欧美日韩精品在线视频 | 日本韩国欧美一区 | 亚洲视频精选 | 国产福利精品在线观看 | 亚洲一级在线 | 经典三级在线视频 | 国产91精品久久久久999 | 免费国产在线观看 | 亚洲视频一区二区三区 | 国产剧情一区二区 | 无遮挡一级毛片私人影院 | 亚洲第一成年免费网站 | 日本欧美久久久久免费播放网 | 日本亚欧乱色视频在线网站 | 欧美成人视 | 夜夜春夜夜夜夜猛噜噜噜噜噜 | 日韩毛片高清在线看 | 三级欧美|